Third Semester B.E. Degree Examination, Jan./Feb. 2023 Mechanics of Materials

BCS SCHEN

Time: 3 hrs.

USN

1

Max. Marks: 100

18AE/AS33

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define Stress and derive the stresses on inclined plane for uniaxial loading condition. (08 Marks)
 - b. Draw stress-strain curve for the given materials mentioning salient features: i) Steel ii) Aluminium iii) Glass iv) Rubber (04 Marks)
 - c. A point in a strained material is subjected to a tensile stress of 120 N/mm² and compressive stress of 80 N/mm² acting at right angles to each other. Find the normal stress, tangential stress and its obliquity on a plane inclined at an angle 30° with the axis of compressive stress. Also find the maximum shear stress. (08 Marks)

OR

- 2 a. Define the following :
 - i) Volumetric strain ii) Shear strain iii) Shear stress iv) Poisson's ratio
 - v) Young's modulus vi) Principal stress
 - b. Derive the elongation in uniform section bar.
 - c. Determine the magnitude of the load "P" necessary to produce zero net change in the length of the straight bar shown in Fig.Q2(c). $A = 400 \text{ mm}^2$.

$$\begin{array}{c} P \\ 4 \\ 3 \\ \hline 2m \\ \hline 4m \\ \hline m^{4} \\ \hline 1m^{4} \\ \hline Fig.Q2(c) \\ \end{array}$$

(08 Marks)

(06 Marks)

(06 Marks)

Module-2

- a. Discuss types of beams and derive for relation between loads, shear forces and bending moment. (10 Marks)
 - b. Find the reactions at the fixed and draw the SFD and BMD for the cantilever shown in Fig.Q3(b).

A Int Int Int Fig.Q3(b)

(10 Marks)

(10 Marks)

OR

- 4 a. Derive the bending equation in beam.
 - b. The cross-section of a beam is shown in Fig.Q4(b), if permissible stress is 150 N/mm², find its moment of resistance. Compare it with equivalent section of the same area for a square section.

(10 Marks)

3

18AE/AS33

Module-3

- Show that intensity of load, $\omega = -EI \frac{d^4y}{dx^4}$ in beam. 5 a.
 - Show that deflection in simply supported beam with a point load at centre b.
 - $Y_c = \frac{\omega \ell^3}{48EI}$

6

7

(10 Marks)

(10 Marks)

(10 Marks)

Show that $\tau = \frac{G\theta}{\rho} \cdot R$ in case of shaft. a.

A solid circular shaft is required to transmit 100 kW at 180 rpm. The permissible shear b. stress in the shaft is 60 N/mm². Find suitable diameter of the shaft, if the angle of twist is not to exceed 1° in length of 3 meter. The value of modulus of rigidity is 0.8×10^5 N/mm².

(10 Marks)

OR

(10 Marks) State and prove Castigliano's second theorem. a. (10 Marks) Write a note on complementary energy and virtual work. b.

OR

Derive for the strain energy due to axial force on the bar. (10 Marks) 8 a. A simply supported beam of span 1 carries a point load P at mid span. Determine the strain b. energy stored by the beam. Also find the deflection at mid-span. (10 Marks)

Module-5

9	a. Define fracture and explain Type I fracture.	(10 Marks)
	b. Discuss Type II and Type III fractures.	(10 Marks)

OR

Define creep with example mentioning the demerits. (10 Marks) 10 a. Explain the stages of creep with neat stage diagram. (10 Marks) b.

2 of 2